行业动态

Industry Dynamic
News 行业新闻

2018年AI领域趋势:公司趋向小型化,区块链、智能制造成关键词

日期: 2018-01-08
浏览次数:

2018年AI领域趋势:公司趋向小型化,区块链、智能制造成关键词


来源:亿欧网

作者:张璐

时间: 2018年1月3日


新技术的真正价值实现不在于替代,而是整合到现有行业和技术解决方案中,从而提高整体的生产效率。

2018年AI领域趋势:公司趋向小型化,区块链、智能制造成关键词


语音交互是未来,也会是未来信息的入口。万物互联之后,不管是智能家居,还是车联网,和人的交互首先第一个是基于自然语言处理技术的语音交互技术,而语音交互技术现在发展非常快速,过去几年在硅谷已经由基础的语义理解,发展到可以做到语境理解和背景判断。

图片和图像信息过剩是工业和医疗影像行业的问题,而计算机视觉技术是目前最好的解决方案。从最基础的安防,再到后面的用户的识别,再到个性化的推送,都是商业应用的趋势。

第二个迎来技术井喷的是机器人领域。有了在机器学习,自然语言处理和计算机视觉领域的长足进步,作为上述技术和硬件传感器的整合,机器人的应用前景就不仅仅是前景,而是现实。

低成本传感器的普及是机器人应用可以推广开来的核心。同时通过在软件层面配套云计算和人工智能技术,过去一年机器人开始越来越多的应用于智能工业、智能制造领域,并开始在医疗领域铺开,比如工业物流,自动化生产,人工外骨骼和手术机器人等。

第三,过去一年大公司的物联网布局已经形成既有的家居物联网生态。新的创新主要集中在车联网,医疗物联网和工业物联网,同时这也是比智能家居更加巨大和能快速产生商业价值的技术创新方向。车联网是物联网在智能交通+无人驾驶领域的创新应用,也是实现无人驾驶的必要条件。车联网是智能交通生态的重要部分,所以过去一年,越来越多的硅谷创新开始转向智能交通生态,而不只是无人驾驶系统。

第四,过去一年公有云和私有云同步发展。大企业需要更多技术创新以形成更加安全和巨大运算能力的公有云,私有云的创新逐渐开始倾向于和公有云的配合。另一个创新趋势是新一代网络加速技术,海量的数据实时产生需要更快速的网络加速技术,信息传递也已经完全形成移动化,所以短平快的网络信息加速也是新的创新趋势。

  • 人工智能

“人工智能将重构几乎所有行业”

施米德胡贝教授认为,一旦产生动物级AI,就可能有人类级AI,届时每个企业都会改变,所有文明都会改变,一切都会改变。

第五,科技进步对于通讯传播的广度、速度和质量提出了更高的要求。5G技术创新在过去一年开始崛起,这也构成了对现有WIFI系统的巨大挑战。

第六,区块链技术未来的前景依旧可能非常广阔,目前只是技术还处于早期,有许多瓶颈需要突破,且未形成成熟的基础设施支持。经过未来几年的市场调整后(类似于2000年的互联网泡沫),然后会形成正式的市场机会。值得关注的是,区块链技术的应用不只是在金融领域,过去一年也开始有在供应链,医疗信息,social data方面的技术应用,而这些领域的应用机会也更加巨大。

  • 未来新型医疗和智能制造

据IMS预测,到2019年,全球医药市场规模将达到1.2万亿美元。

传统医疗更多的是硬件创新,但在智能医疗和传统医疗的结合下,新型医疗将实现机器视觉和传统方法结合进行看片;用机器学习和自然语言处理做病例审阅;甚至通过数据处理辅助传统的癌症筛查和检测技术,用大数据做拟合,使得检测结果更加准确。

此外,以前传统医疗创新最大的问题在于所有人的生理信息是离散的,所以无法实时获得数据真正的价值。但现在,当AI技术应用落地之后,医疗器械便成为了一个数据采集中心,将采集海量数据放入云端,进行实时分析,通过整合达到精准诊疗和检测。

未来医疗的另一个重要趋势,就是向靶向诊疗发展——更加精准和个性化的诊断和治疗。谈及精准和个性化,就不可避免的涉及到一个新兴技术——纳米机器人,包括通过纳米维度实现DNA引擎,内腔手术机器人,以及用于脑功能修复和提升的人脑机器互联技术等。

在智能工业(智能制造)领域,新技术和传统行业的结合始于制造业和半导体行业实现的生产线智能化。如今,这个智能化会进入2.0时代,即不只是简单的智能化,而是软件硬件的同步升级。硬件方面,低成本的传感器的大量普及使其收集的生产线的信息更加的准确和具有实时性。

而网络技术和云计算的普及,可以使生产线可以快速实时纠错,减少停机时间,大量提高生产效率。此外,对于化工、石油等更为传统的行业来说,这些行业与新技术的结合可以提升的效率更大。尤其在精细化工领域,很多化合物合成,利用人工智能技术和网络技术的结合进行智能改造,可以提升科研速度,提高生产线上的质量和效能控制。

正如前文提到的那样,未来医疗的趋势是个性化和靶向,这为制药行业提供了更广阔的空间。通过收集个性化信息,根据每个人不同的病症,进行个性化的诊断和治疗,将来药物的生产也会随之走向定制化——每个人吃的药都不一样。另外就是新药研发,以往需要大量的人力和时间,而现在和将来利用新技术可以进行虚拟的筛选、整合和预测,可大大缩短新药研发的周期。

  • 新的信息垄断即将出现

大型科技公司的技术垄断并不是今天才形成的,而信息垄断即将成为大公司下一个超级金矿。

科技发展到一定程度形成奇点效应,新经济体的形成都是依托于科技创新,将公司从人口密集形式中解放出来。公司整体趋向小型化,单个人的价值创造和经济贡献指数型增长。低端的,重复性的工作通过技术手段而非人工方式完成,网络加速,通信技术可以减少工作地域影响,更好地适应全球化团队。通过技术创新,科技公司可以形成跨政府地域的信息采集,海量数据成为公司最宝贵的资产。

以生物信息学为例,过去人们的生理信息是离散的,因为传感器和小型化医疗设备的普及,现在可以将每个人原本碎片化的个性信息整合,包括生理信息、样本数据、基因等,形成的巨大数据库。比如药厂如果想研发个性化的药物,它的前提是拥有数据,那么设想一下,如果一个药厂有了某国家或地域人的大量生理信息,比如基因缺陷等,这可以形成很大规模的生物信息垄断。

此外,信息垄断将打破科技公司既有的估值评价体系。跨行业的数据交换具有很强的乘法效应。跨行业后,新用户的获取成本更低,同时跨行业后,数据更加有价值,从而通过信息垄断形成新的科技垄断,不只单纯是行业垄断。

说到底,信息垄断是一种资源型垄断,而且不受行业地域的限制。低成本传感器广泛应用到人类社会各个领域,所形成的海量数据为科技公司的发展提供了可观的势能。通过技术触角形成社会信息垄断,所产生的社会影响已经显现。

可以说,未来数据信息就像氧气一样,无处不在,不可或缺。人不呼吸会死,同样,未来只有那些能自主掌握呼吸命运的企业才能生存下来。


相关新闻 / 推荐新闻 More
2018 - 01 - 19
日期:2018年1月18日来源: 亿欧网作者:杰瑞·卡普兰最近,人工智能(AI)研究不断取得新突破,几乎每周都有新型的应用出现,从智能化网络攻击检测到如何帮助顾客挑选合适时装等,将给人们的生活、工作和娱乐方式带来深刻影响。然而,仍有公众对人工智能存在认识上的误解,需要予以澄清。特别是政策制定者们在人工智能技术革新的推动、管理等方面将发挥重要作用,更应避免一些误解。第一、对人工智能认识的误区随着人工智能技术的不断发展,人类制造的机器正在变得越来越智能,它不断掌握新技能,能力越来越强大。因此很多人担心,在不久的将来,人工智能很有可能威胁到人类的“统治”地位。持这种观点的人认为,如果人工智能聪明到可以开车、识别图片、打败世界围棋冠军、确定癌症病变以及完成语言翻译,那它不久就有能力完成人类所能做的任何事情。其实,这种观点存在误区。他们将最近人工智能领域的创新进展,理解为AI已经取得能够复...
2018 - 01 - 12
日期:2018年1月11日来源:机械之心近日,Medium上一篇题为《AI in 2018 for developers》的文章,针对机器学习应用于业界的机器学习开发人员,根据2017年的人工智能领域的最新和最重大进展,对2018年的进展做了展望。大家好,又见面了!在上一篇文章中,我谈到了自己关于研究领域的看法,即哪些研究领域正在成熟且能在今年发展壮大。继续从事研究当然很棒,但是,必定还有一些人工智能领域在 2017 年已经成熟、现已准备投入大规模应用了。这就是本文的主题——我想分享的是那些已经发展得足够好的技术。它们已能应用于你当下的工作中,甚至你能借此创业。重要提示:这是一份涵盖人工智能领域、算法和技术的清单,且它们都能立即投入使用。例如,你可以在文中看到时间序列分析,因为深度学习正在迅速取代信号处理领域之前的先进技术。但是,文中并没有提到强化学习(虽然它听起来更酷),因为在我看来它目...
2018 - 01 - 08
2018年AI领域趋势:公司趋向小型化,区块链、智能制造成关键词来源:亿欧网作者:张璐时间: 2018年1月3日新技术的真正价值实现不在于替代,而是整合到现有行业和技术解决方案中,从而提高整体的生产效率。语音交互是未来,也会是未来信息的入口。万物互联之后,不管是智能家居,还是车联网,和人的交互首先第一个是基于自然语言处理技术的语音交互技术,而语音交互技术现在发展非常快速,过去几年在硅谷已经由基础的语义理解,发展到可以做到语境理解和背景判断。图片和图像信息过剩是工业和医疗影像行业的问题,而计算机视觉技术是目前最好的解决方案。从最基础的安防,再到后面的用户的识别,再到个性化的推送,都是商业应用的趋势。第二个迎来技术井喷的是机器人领域。有了在机器学习,自然语言处理和计算机视觉领域的长足进步,作为上述技术和硬件传感器的整合,机器人的应用前景就不仅仅是前景,而是现实。低成本传感器的普及是机器人应用可...
2017 - 12 - 29
2017年人工智能大事件和关键词盘点来源:数据观综合 时间:2017-12-26时光飞逝,转眼间2017年即将结束,2017年可谓是人工智能大爆发的一年,“人工智能”这一大关键词毫无疑问是2017年的“头牌明星”,无疑是最受关注的热点之一。在这一年中,人工智能领域爆发了很多件大事,在这即将迎来2018年的新起点,一起来回顾和盘点一下2017年人工智能重点大事件和人工智能领域重要关键词吧! { 01 }AlphaGo再胜人类5月,AlphaGoMaster与人类世界实时排名第一的棋手柯洁对决,最终连胜三盘。然而短短40天的时间后,新一代AlphaGo Zero,并以100:0的成绩完败前代版本。  { 02 }腾讯宣布正式进军AI6月,腾讯宣布正式向外开放在计算机视觉、智能语音识别、自然语言处理等领域的人工智能技术,正式进军AI。  { 03 }李彦宏...
关闭窗口】【打印