行业动态

Industry Dynamic
News 行业新闻

大数据变现给了数据建模者自证价值的最好机会

日期: 2017-12-29
浏览次数:

大数据变现给了数据建模者自证价值的最好机会


从BI时代开始,笔者曾经做过取数,报表,建模,挖掘,分析等各类数据支撑工作,有个问题一直萦绕心中,数据支撑者如何证明自己工作的价值。

一、关于量化数据支撑价值的反思

一个取数到底为企业创造了多少价值?一张报表带来了什么改变?做数据挖掘专题到底值不值?

这个问题很重要,如果没有一种有效衡量数据产出的方式,数据支撑者就可能失去方向,进而丧失进步的动力,数据支撑者不能成为拉磨的驴子。

取数者,取了1000个和10000个,到底有多大的区别?这个问题最好搞清楚,如果是10倍的关系,当然取得越多越好,但是,如果是2倍呢?是否有更重要的事情去做呢,比如研发一个自助取数工具?也许这个对于企业更有价值,但有时的确缺了这把客观的尺子。

在大多企业业务人员提取数需求是不需要付出成本的,没有成本就意味着低质量的需求泛滥,这倒不是责任心的问题,有什么样的机制就会孕育出什么样的需求模式,怪不了提需求的人,比如不能怪业务人员催着你取数但实际上他在你完成后却没有去下载取数结果这种现象的发生。

需要反思的是有没有好的量化评估手段,很可惜,在大多数时候,在大多数企业内没有,比如报表的价值大多跟决策有关,但决策是很难量化的东西,可以说领导看了你这张报表才有了正确的决策,也可以说跟这个报表毫无关系,可以说由于你的取数为公司成功营销到了很多用户,但要知道,公司为这次营销投入了很多渠道成本,营销成本及人力成本,取数的作用可能很小很小,至少比例不大。

一种证明数据价值的方式是做AB测试,但高昂的实施成本在大多数传统企业线下渠道为王的情况下是不现实的,而互联网企业依赖其在线的优势让很多建模师有了表现的舞台,无论如何,数据建模师还是需要一把尺子,用靠谱的数据来证明自己工作的价值。

二、关于大数据带来的评估方式的改变

在进入大数据时代后,不再会有人由于大数据建模者做了报表的事而认可他了,因为大家的期待更高了,对于从BI迈入到大数据的支撑人士来说,绝不是简单的换了个名头,而是要直面最大的挑战,为变现直接创造价值。

要承认,传统业务的核心竞争力大多还是停留在产品本身,虽然数据模型在产品分析,产品营销等方面有价值,但在整个价值链中,数据建模起到的作用还是有限的,即使用AB测试证明了数据模型的价值,但占比往往偏小,导致其他环节的一个小波动就可以完全掩盖了模型的那点提高,比如不计成本的营销就让任何建模都失去了意义。

不是说数据模型对传统业务无用,而是传统业务的机制、流程可能限制了数据价值的发挥,传统业务要用好数据首先得革自己做事方式的命,比如从线下走到线上,更多的关注投入产出比,更多的依赖机器而不是经验决策,这些都涉及到企业数据文化的再造,无法一蹴而就。

而大数据变现则是全新的、直接基于数据创造价值的业务,情形完全不同,比如客户洞察和精准拓客,其核心的要求就是要标签足够准,覆盖足够广,现在大数据变现可是买方市场,模型没到一定的水平,不刺刀见红,客户是不会付费的,即使现在能赚钱的变现业务,也会由于大量同质化的竞争最后变成数据质量和模型高低之争,在整个价值链条中,模型将超越营销、渠道甚至产品成为最为核心的东西,一般的产品也许可以互相COPY,但基于企业特有数据创造的模型却难以复制,这是最大的差异化,也事实上决定了企业大数据变现的潜力,这个时候,数据建模师成为了变现的焦点,评估的方式显然是模型能直接能带来多少收入了,模型师将被推到业务的最前端。

三、大数据建模者的巨大挑战

一般来讲,企业的裸数据大多是无法直接创造价值的,即使有,也是极其有限的,必须通过加工处理才能发挥出最大的潜力,比如运营商的上网日志如果不经过内容解析就会一文不值,位置数据如果没有了POI的配合就缺失了意义,位置数据跟用户数据如果没有有效结合就无法满足大多数的应用场景。

对于建模者来讲,这是个最好的时代,也是最坏的时代,好的是给了大数据建模者独立施展才华的舞台,坏的是大数据建模者的价值变得可量化,很透明,各人能力高低,贡献大小,高下立判。

对于处于转折期的传统企业的建模者来讲,建议做好以下一些准备,当然各个企业所处的阶段不同,面临的情况不同,不能一概而论。

1、角色的转变

甲方企业的建模师做变现第一要务就是抛弃固有的甲方思维,也许在企业内部做支撑时跟业务人员还是平的,但跟外部客户做生意则成了彻底的乙方。

碰到个金融客户谈合作,建模师抱怨对方需求都提不清楚,因此自己也无从下手,这是典型的传统支撑者的形象,做事情务必要对方解释清楚,但外部客户对于企业的数据往往不了解,很多时候甚至不知道能得到什么,需要建模师在沟通中主动去捕捉需求,针对性提供解决方案。

经常有这样的案例,客户提要什么标签,建模师就机械的回答有还是无,事实上,拥有主动意识的建模师更应顺藤摸瓜去理解客户的真实意图,而不是简单的考虑标签能否满足,更深一层次讲,即使很多标签是现成的,建模师也应该努力去寻找更好的解决方案,因为现成的标签可能质量不高,比如运营商以前靠揣测基于DPI打造的行业标签往往经受不住现实的商业检验,辛苦谈下来的合作往往由于数据初次体验不好而中断,数据建模师要为数据的最终品质负责,而不是简单的为一次需求负责,这个要求还是很高的。

“我们是在创业,而不是在应对需求,做大数据变现的,首先要完成这个角色的转变。”

2、对精准的追求

当投放成本成为了客户付钱的依据时,精准就成了变现最核心的武器,客户只会为精准买单,千分之一跟百分之十天壤之别,显然需要建模师的鬼斧神工,点击率10%高不高,20%呢,30%呢?建模师每提升一点,带来的就是现实的收益,这个跟以前的情况完全不同。

为什么有些建模师平时技术不错,但当真的机会放在眼前时,往往发现技能不够用了呢?答案可能在于精准是个综合性问题,而不是简单的技术问题,对于建模师的要求其实是全方面的。

这让我想起了运营商以前评估BOSS系统的可用性,往往用CPU、内存利用率等技术指标来衡量,但后来发现这些指标跟客户的实际感知是有很大差异的,因此需要建立端到端的客户感知指标体系,建立这套指标体系需要贯通整个业务流程,在每个节点上去优化提升,而不是简单的关注几个纯技术指标就可以了。

数据建模师也一样,拥有调参技能是远远不够的,要能理解客户的真正诉求,要能针对影响精准性的任何一个环节给出建议或解决方案,比如数据的选择、渠道的选择、推送的用语,时机的把握、产品的设计等等,建模师要充分利用建模技术,但不要拘泥于用单个技术解决问题,外来的数据科学家扑街往往是被技术搞死的,没人关注你用什么模型。

3、丢掉那个边界

心有多大,舞台就有多大,企业的确要为建模师打造更加扁平化的环境,数据建模师则更不必拘泥于岗位限制,能往前走就往前走一步,越是以数据为卖点的大数据变现,越是要让建模师冲锋在前,全栈工程师有之,在大数据领域也需要全栈建模师,比如在某个垂直领域可以让模型师端到端负责,没有什么不可以。

当以数据简单组装为卖点的诸如客流等产品喧嚣之后,大数据深度变现必然是以拓客、风控等为核心的,数据建模的价值会越来越大,笔者以前提过运营商必须掌握五个核心建模能力,这些也许是运营商规模化变现的未来。

卖产品的如果自己都不懂产品,估计也卖不好,卖“数据”的,如果没有对数据的深度理解,也很难说服人,因此,提倡所有做数据变现的都经历一下取数或建模的阶段,用数据说服了自己,才能更好的说服客户,这是同一般产品不一样的地方。

企业大数据变现的意义不仅仅是有了新的商业模式,可能也在改变着很多的东西,有对外变现机会的数据建模师是非常幸运的,在感谢时代赋予机会的同时,自己也一定要加油。


相关新闻 / 推荐新闻 More
2018 - 01 - 19
日期:2018年1月18日来源: 亿欧网作者:杰瑞·卡普兰最近,人工智能(AI)研究不断取得新突破,几乎每周都有新型的应用出现,从智能化网络攻击检测到如何帮助顾客挑选合适时装等,将给人们的生活、工作和娱乐方式带来深刻影响。然而,仍有公众对人工智能存在认识上的误解,需要予以澄清。特别是政策制定者们在人工智能技术革新的推动、管理等方面将发挥重要作用,更应避免一些误解。第一、对人工智能认识的误区随着人工智能技术的不断发展,人类制造的机器正在变得越来越智能,它不断掌握新技能,能力越来越强大。因此很多人担心,在不久的将来,人工智能很有可能威胁到人类的“统治”地位。持这种观点的人认为,如果人工智能聪明到可以开车、识别图片、打败世界围棋冠军、确定癌症病变以及完成语言翻译,那它不久就有能力完成人类所能做的任何事情。其实,这种观点存在误区。他们将最近人工智能领域的创新进展,理解为AI已经取得能够复...
2018 - 01 - 12
日期:2018年1月11日来源:机械之心近日,Medium上一篇题为《AI in 2018 for developers》的文章,针对机器学习应用于业界的机器学习开发人员,根据2017年的人工智能领域的最新和最重大进展,对2018年的进展做了展望。大家好,又见面了!在上一篇文章中,我谈到了自己关于研究领域的看法,即哪些研究领域正在成熟且能在今年发展壮大。继续从事研究当然很棒,但是,必定还有一些人工智能领域在 2017 年已经成熟、现已准备投入大规模应用了。这就是本文的主题——我想分享的是那些已经发展得足够好的技术。它们已能应用于你当下的工作中,甚至你能借此创业。重要提示:这是一份涵盖人工智能领域、算法和技术的清单,且它们都能立即投入使用。例如,你可以在文中看到时间序列分析,因为深度学习正在迅速取代信号处理领域之前的先进技术。但是,文中并没有提到强化学习(虽然它听起来更酷),因为在我看来它目...
2018 - 01 - 08
2018年AI领域趋势:公司趋向小型化,区块链、智能制造成关键词来源:亿欧网作者:张璐时间: 2018年1月3日新技术的真正价值实现不在于替代,而是整合到现有行业和技术解决方案中,从而提高整体的生产效率。语音交互是未来,也会是未来信息的入口。万物互联之后,不管是智能家居,还是车联网,和人的交互首先第一个是基于自然语言处理技术的语音交互技术,而语音交互技术现在发展非常快速,过去几年在硅谷已经由基础的语义理解,发展到可以做到语境理解和背景判断。图片和图像信息过剩是工业和医疗影像行业的问题,而计算机视觉技术是目前最好的解决方案。从最基础的安防,再到后面的用户的识别,再到个性化的推送,都是商业应用的趋势。第二个迎来技术井喷的是机器人领域。有了在机器学习,自然语言处理和计算机视觉领域的长足进步,作为上述技术和硬件传感器的整合,机器人的应用前景就不仅仅是前景,而是现实。低成本传感器的普及是机器人应用可...
2017 - 12 - 29
2017年人工智能大事件和关键词盘点来源:数据观综合 时间:2017-12-26时光飞逝,转眼间2017年即将结束,2017年可谓是人工智能大爆发的一年,“人工智能”这一大关键词毫无疑问是2017年的“头牌明星”,无疑是最受关注的热点之一。在这一年中,人工智能领域爆发了很多件大事,在这即将迎来2018年的新起点,一起来回顾和盘点一下2017年人工智能重点大事件和人工智能领域重要关键词吧! { 01 }AlphaGo再胜人类5月,AlphaGoMaster与人类世界实时排名第一的棋手柯洁对决,最终连胜三盘。然而短短40天的时间后,新一代AlphaGo Zero,并以100:0的成绩完败前代版本。  { 02 }腾讯宣布正式进军AI6月,腾讯宣布正式向外开放在计算机视觉、智能语音识别、自然语言处理等领域的人工智能技术,正式进军AI。  { 03 }李彦宏...
关闭窗口】【打印